走進修仙 第一百八十七章 數論與幾何
1940年,法國數學家、后世布爾巴基學派的初代學者之一的安德烈·韋伊在監獄當中,給自己的妹妹著名哲學家西蒙娜·韋伊寫過一封信。他在這封信中,用連哲學家都能看懂的、非常簡單的語言詳細地解釋了他對數學“大趨勢”的理解。在信中,韋伊談到了類比在數學中的作用,并以自己最感興趣的類比數論與幾何學的類比,來闡明這個問題。
事實證明,數論與幾何學的類比在朗蘭茲綱領的發展過程中起到了非常重要的作用。
朗蘭茲綱領的關鍵點是數學家們所熟悉的對稱概念也就是一種能夠依靠“群論”處理的概念。朗蘭茲綱領關注的焦點也是群的表示。相關研究發現,這些伽羅瓦群的表示可以形成數域的“源代碼”,攜帶有關數字方面的重要信息。
朗蘭茲本人是這么比喻這個過程的。交響樂是由各種樂器演奏的聲音所對應的諧波經過重疊而構成的,普通的聲音與之相似,也是由諧波經過重疊形成的。在數學上,已知函數便可以表示成描述諧波的函數如正弦和余弦等我們熟悉的三角函數。自守函數則可以被視為我們更加熟悉的這些諧波的高級版本,在利用自守函數完成計算時可以借助多種分析方法。朗蘭茲提出了一個令人瞠目結舌的觀點:我們可以⑤長⑤風⑤文⑤學,w√ww.c→fwx.n︾et利用自守函數來研究難度大得多的數論問題。
通過這種方法,他發現數字譜寫出了一個不為人所知的“和聲”。
數學的一個主要作用是對信息進行排序分類,用朗蘭茲的話說,即“從看似雜亂無章的線索中理出頭緒”。朗蘭茲的理念之所以有非凡的意義,正是因為它可以對數論中看似雜亂無章的數據加以整理,使之形成某種規律,表現出對稱性與統一性。
打破“數論”與“群論”之間的隔閡,將這個“最后一塊”也納入最初由布爾巴基學派規劃的版圖。
這些高度抽象的概念竟然如此和諧統一、水乳交融,的確令人嘆為觀止、難以置信。這種和諧統一揭示了抽象概念背后內涵豐富、神秘莫測的內容,仿佛掀開了人類面前的一層幕布,一直不為人所知的神秘存在顯露出了真面目。
自此,所有的已知數學就可以歸入一個大的體系了。
而在那一封著名的信件當中,布爾巴基學派的開創者之一、安德烈·韋伊則是這么描述這個思維的。
“……我的研究目的是破譯用三種語言寫就的文本。在這三個領域中,我只有一些支離破碎的知識。我對這三種語言分別有一些理解,但是我也清楚這三個軌道彼此之間在內涵上存在巨大的分歧,我到目前為止還沒有充分掌握這些分歧。經過幾年的研究,我只積累了一些知識的碎片,這還不足以編纂出一本完整的翻譯字典。”
也正是因為如此,所以現代的數學家,一直將朗蘭茲綱領比作羅賽塔石碑。
一塊用不同語言刻錄了相同文本的石碑。
“羅賽塔石碑”乃是語言學上一個重要的標志。它的出現,使得數種古文字的破譯變成可能。它也被賦予了“使幾種擁有不同意義的系統得以相互轉化”的含義。
王崎最初雕刻石碑,純粹就是想生造出一個羅賽塔石碑,并且裝個逼蓋因修士存在,神州各個區域之間的交流非常頻繁,根本就沒有多少“閉塞”的區域,根本就沒有形成不同語言的條件,“書同文”也在很早就完成了。妖族、龍族亦是如此。如果不是人族還有凡人的話,“方言”這個東西都很難出現。
換句話說,這地方根本就不可能出現類似于“羅賽塔石碑”的東西。王崎最終也只能自己刻一個裝逼。
但是,在刻錄的過程當中,碑文上的內容,逐漸從玩笑一般的墓志銘,轉變為某種思維的游戲。
若是將某些數學上的概念,用自己生造出的不同方式表現出來,到底能做到什么程度呢?
也就是“對稱”的思想。
在古老的文字游戲當中,有一種稱作“璇璣圖”的詩文廣為傳頌。在神州享負盛名的璇璣圖,總計八百四十一字,縱橫各二十九字,縱、橫、斜、交互、正、反讀或退一字、迭一字讀均可成詩,詩有三、四、五、六、七言不等。若是從幾何意義上看,王崎的“游戲之作”復雜度甚至猶有勝之他的石碑上,不只是“概念”與“概念”之間存在對稱與轉化,就連單獨的符號之間,也以某種奇特的規則表現著“對稱”的主題。
“概念”來自數論,“符號”卻是基于幾何設計出來的。
有那么一段時間大約就南溟核子研究中心剛建立那會兒,王崎特別沉迷于這種基于朗蘭茲綱領的游戲地球的數學家們鮮有機會像今天的他這樣揮霍大工業堆出來的計算力,而且他們有限的生命也不允許他們將大把的光陰與精力耗在這種意義不大的游戲上。
王崎自己都不知道,這種看似無聊又浪費腦力的游戲,到底對他的思維產生了怎樣的影響。他一度覺得自己僅僅是在用一種結合了“游戲”和“藝術”的方式,再現一些地球上已知的內容。
可回過神來……
“這多少有些類似于連宗的做法?用具體的形象代替概念?”王崎如此猜測到。
如今,元神化的過程隱約揭示著他的進步。
他自己都預料不到自己現在的水準了。
“嗯……說不定過幾年我就能夠將谷山志村韋伊給弄出來?然后試著沖擊沖擊費馬大定理。”王崎自言自語,然后苦笑。
沒那么簡單。
朗蘭茲本人在打通數論和群論之間的關節上,都花了足足三十年,這還是在整整一代的數學家能夠作為他的助力的情況下羅伯特·朗蘭茲的崛起,與亞歷山大·格羅滕迪克的退隱是發生在同一個時代的,兩個事件之間只隔了幾年。兩代天才如有默契一般的完成了某種“交棒”。數學的教皇將自己改造過的數學界交給了下一個有志于讓學術統一起來的人。朗蘭茲在很長一段時間里都擔任著“武林盟主”的職位,哪怕是蘇聯學派都在討論它的工作。
但就是這樣,他依舊花了三十年才完成自己的工作。
就算王崎知曉了對方工作的絕大部分細節,也不可能在短時間內復刻,更不可能只用幾年就從無到有完成費馬大定理的證明。
更何況,他元神在即,“幾年之后”已經沒有意義了。
另一方面……
王崎的前世畢竟是一個物理學家。如果按照某種說法,他也可以算是“培根信徒”堅信“一切均基于眼睛所見自然之確鑿事實”者。
按照培根的觀點,科學家需要周游世界收集事實,或是反復試驗復刻現象,直到所積累的事實能揭示出自然的運動方式。科學家們從這些事實中推導出自然運作所遵循的法則。
而按照一個物理學家的觀念……“布爾巴基綱領的一個主要不足是錯失了一種驚喜元素”。
數學史的發展,處處充滿非邏輯的跳躍。指數與對數發明順序的先后,就是一個典型的例子邏輯的順序與實際出現的順序完全不一樣。而布爾巴基學派則是試圖將一切都納入一個邏輯的過程當中。
這倒不是說布爾巴基學派不好。王崎作為數學家的靈魂,始終陶醉在自己的研究當中。但是內心的傾向,卻讓他覺得或許我可以嘗試一下用其他的道路踏破天關成就元神?
還有什么呢?基于這個世界的“十六重態”嗎?
所謂的“八重態”,是最初人類只發現三種夸克的時候的一種理論。在這個模型當中,“代”的概念還沒有出現,上夸克和下夸克被當做是兩種完全不同的夸克實際上,他們應該算是同一代夸克。而在這個對稱模型當中,夸克、輕子、中微子的總的種類是八種。他們被納入一個模型當中,被稱作“八重態”
而在一年之后,就有人在這個模型上做出新的延伸,提出了第四種夸克存在的可能性。然后,更多這個模型之外的夸克被找到。
而在王崎的時代,夸克、輕子和中微子的數量應該是這樣的:三代中微子、三代輕子、三代夸克,每代夸克都有正反兩種。即六種夸克。
在不計算夸克的“味”的情況之下,十二重態的模型被建立起來。
而在這個宇宙,就應該是十六重態了。
中微子,四代,四種。
輕子,四代,四種。
夸克,四代,八種。
共計十六種。
“如果不用腦子硬套的話,倒是可以整出一套東西。”
“這樣的話,甚至不會觸動元神化的過程……也能夠發表論文,讓其他人來幫我完成后續的工作。”
“但是,現在還不能排除這個世界存在第五代夸克的情況。也就是說……使用這種理論作為元神法的根基,還是有一定危險的。”(
走進修仙 第一百八十七章 數論與幾何